The miRNA machinery targets Mei-P26 and regulates Myc protein levels in the Drosophila wing.
نویسندگان
چکیده
MicroRNAs (miRNAs) have been implicated in cell-cycle regulation and in some cases shown to have a role in tissue growth control. Depletion of miRNAs was found to have an effect on tissue growth rates in the wing primordium of Drosophila, a highly proliferative epithelium. Dicer-1 (Dcr-1) is a double-stranded RNAseIII essential for miRNA biogenesis. Adult cells lacking dcr-1, or with reduced dcr-1 activity, were smaller than normal cells and gave rise to smaller wings. dcr-1 mutant cells showed evidence of being susceptible to competition by faster growing cells in vivo and the miRNA machinery was shown to promote G(1)-S transition. We present evidence that Dcr-1 acts by regulating the TRIM-NHL protein Mei-P26, which in turn regulates dMyc protein levels. Mei-P26 is a direct target of miRNAs, including the growth-promoting bantam miRNA. Thus, regulation of tissue growth by the miRNA pathway involves a double repression mechanism to control dMyc protein levels in a highly proliferative and growing epithelium.
منابع مشابه
Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling.
In the Drosophila ovary, bone morphogenetic protein (BMP) ligands maintain germline stem cells (GSCs) in an undifferentiated state. The activation of the BMP pathway within GSCs results in the transcriptional repression of the differentiation factor bag of marbles (bam). The Nanos-Pumilio translational repressor complex and the miRNA pathway also help to promote GSC self-renewal. How the activi...
متن کاملThe mei-P26 gene encodes a RING finger B-box coiled-coil-NHL protein that regulates seizure susceptibility in Drosophilia.
Seizure-suppressor mutations provide unique insight into the genes and mechanisms involved in regulating nervous system excitability. Drosophila bang-sensitive (BS) mutants present a useful tool for identifying seizure suppressors since they are a well-characterized epilepsy model. Here we describe the isolation and characterization of a new Drosophila seizure-suppressor mutant that results fro...
متن کاملMei-P26 mediates tissue-specific responses to the Brat tumor suppressor and the dMyc proto-oncogene in Drosophila.
TRIM-NHL proteins are a family of translational regulators that control cell growth, proliferation, and differentiation during development. Drosophila Brat and Mei-P26 TRIM-NHL proteins serve as tumor suppressors in stem cell lineages and have been proposed to exert this action, in part, via the repression of the protooncogene dMyc. Here we analyze the role of Brat, Mei-P26, and dMyc in regulat...
متن کاملThe TRIM-NHL Protein TRIM32 Activates MicroRNAs and Prevents Self-Renewal in Mouse Neural Progenitors
In the mouse neocortex, neural progenitor cells generate both differentiating neurons and daughter cells that maintain progenitor fate. Here, we show that the TRIM-NHL protein TRIM32 regulates protein degradation and microRNA activity to control the balance between those two daughter cell types. In both horizontally and vertically dividing progenitors, TRIM32 becomes polarized in mitosis and is...
متن کاملBrk regulates wing disc growth in part via repression of Myc expression.
The molecular mechanisms regulating tissue size represent an unsolved puzzle in developmental biology. One signalling pathway controlling growth of the Drosophila wing is Dpp. Dpp promotes growth by repression of the transcription factor Brk. The transcriptional targets of Brk that control cell growth and proliferation, however, are not yet fully elucidated. We report here a genome-wide ChIP-Se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 29 10 شماره
صفحات -
تاریخ انتشار 2010